
LM140K 3-Terminal Positive Regulator

Check for Samples: LM140K

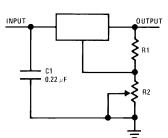
FEATURES

- Complete Specifications at 1A Load
- Output Voltage Tolerances of ±4% at T_i = 25°C
- Internal Thermal Overload Protection
- Internal Short-circuit Current Limit
- Output Transistor Safe Area Protection
- P⁺ Product Enhancement Tested

Typical Applications

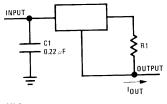
*Required if the regulator is located far from the power supply filter.

**Although no output capacitor is needed for stability, it does help transient response. (If needed, use 0.1 µF, ceramic disc).


Figure 1. Fixed Output Regulator

DESCRIPTION

The LM140K monolithic 3-terminal positive voltage regulator employs internal current-limiting, thermal shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 1.0A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.


Considerable effort was expended to make the entire series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

The LM140K is available in 5V, 12V and 15V options in the steel TO-3 power package.

 $V_{OUT} = 5V + (5V/R1 + I_Q) R2 5V/R1 > 3 I_Q,$ load regulation (L_r) \approx [(R1 + R2)/R1] (L_r of LM140K-5.0).

Figure 2. Adjustable Output Regulator

 $I_{OUT} = \frac{V2-3}{R1} + I$

 $\Delta I_{\rm O}$ = 1.3 mA over line and load changes.

Figure 3. Current Regulator

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

SNVS994 – JULY 2013 www.ti.com

Connection Diagrams

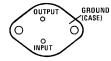


Figure 4. TO-3 Metal Can (Bottom View)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)(3)

DC Input Voltage	35V	
Internal Power Dissipation ⁽⁴⁾	Internally Limited	
Maximum Junction Temperature	150°C	
Storage Temperature Range		−65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	TO-3 Package (NDS)	300°C
ESD Susceptibility ⁽⁵⁾		2 kV

- (1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Conditions are conditions under which the device functions but the specifications might not be ensured. For ensured specifications and test conditions see the Electrical Characteristics
- (2) Specifications and availability for military grade LM140H/883 and LM140K/883 can be found in the LM140QML datasheet (SNVS382). Specifications and availability for military and space grade LM140H/JAN and LM140K/JAN can be found in the LM140JAN datasheet (SNVS399).
- (3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (4) The maximum allowable power dissipation at any ambient temperature is a function of the maximum junction temperature for operation (T_{JMAX} = 125°C or 150°C), the junction-to-ambient thermal resistance (θ_{JA}), and the ambient temperature (T_A). P_{DMAX} = (T_{JMAX} ¬ T_A)/θ_{JA}. If this dissipation is exceeded, the die temperature will rise above T_{JMAX} and the electrical specifications do not apply. If the die temperature rises above 150°C, the device will go into thermal shutdown. For the TO-3 package (NDS), the junction-to-ambient thermal resistance (θ_{JA}) is 39°C/W. When using a heatsink, θ_{JA} is the sum of the 4°C/W junction-to-case thermal resistance (θ_{JC}) of the TO-3 package and the case-to-ambient thermal resistance of the heatsink.
- (5) ESD rating is based on the human body model, 100 pF discharged through 1.5 k Ω .

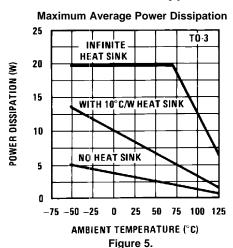
Operating Conditions⁽¹⁾

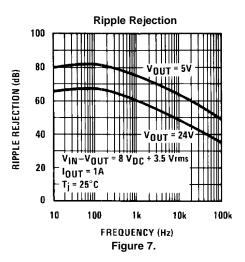
Temperature Range (T _A) ⁽²⁾	LM140	−55°C to +125°C

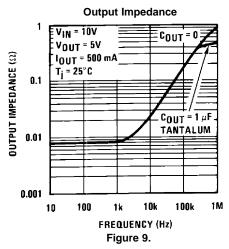
- (1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Conditions are conditions under which the device functions but the specifications might not be ensured. For ensured specifications and test conditions see the Electrical Characteristics.
- (2) The maximum allowable power dissipation at any ambient temperature is a function of the maximum junction temperature for operation (T_{JMAX} = 125°C or 150°C), the junction-to-ambient thermal resistance (θ_{JA}), and the ambient temperature (T_A). P_{DMAX} = (T_{JMAX} ¬ T_A)/θ_{JA}. If this dissipation is exceeded, the die temperature will rise above T_{JMAX} and the electrical specifications do not apply. If the die temperature rises above 150°C, the device will go into thermal shutdown. For the TO-3 package (NDS), the junction-to-ambient thermal resistance (θ_{JA}) is 39°C/W. When using a heatsink, θ_{JA} is the sum of the 4°C/W junction-to-case thermal resistance (θ_{JC}) of the TO-3 package and the case-to-ambient thermal resistance of the heatsink.

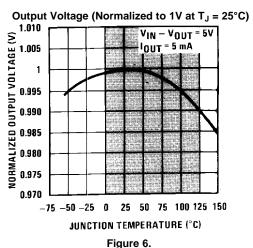
Submit Documentation Feedback

LM140 Electrical Characteristics

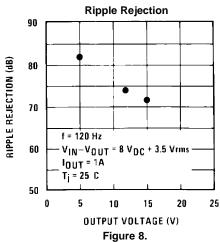

 $55^{\circ}\text{C} \le \text{T}_{\text{J}} \le + 150^{\circ}\text{C}$ unless otherwise specified⁽¹⁾

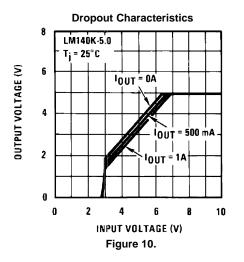

		Output Vo	Itage		5V		12V						
Symbol	Input Voltag	je (unless		10V		19V			23V			Units	
	Parameter	(Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Vo	Output	$T_J = 25^{\circ}C$, 5 mA ≤ I _O ≤ 1A	4.9	5	5.1	11.75	12	12.25	14.7	15	15.3	V
	Voltage	P _D ≤ 15W	, 5 mA ≤ I _O ≤ 1A	4.8		5.2	11.5		12.5	14.4		15.6	V
		V _{MIN} ≤ V _{IN}	$(7.5 \le V_{IN} \le 20)$			$(14.8 \le V_{IN} \le 27)$		$(17.9 \le V_{IN} \le 30)$		V			
ΔV_{O}	Line Regulation	I _O = 500 r	nA	10			18				22	mV	
		T _J = 25°C ≤ +150°C	, Δ V _{IN} , −55°C ≤ T _J	(7.5	$(7.5 \le V_{IN} \le 20)$			$(14.8 \le V_{IN} \le 27)$		$(17.9 \le V_{IN} \le 30)$		V	
		$T_J = 25^{\circ}C$		3 10			4 18			4 22			mV
		ΔV _{IN} , -55	$^{\circ}$ C \leq T _J \leq +150 $^{\circ}$ C	$(7.5 \le V_{IN} \le 20)$			$(14.5 \le V_{IN} \le 27)$			$(17.5 \le V_{IN} \le 30)$			V
		$T_J = 25^{\circ}C$				4			9			10	mV
		Over Tem	perature	12			30			30			mV
		ΔV_{IN}		(8 ≤ V _{IN} ≤ 12)			(16 ≤ V _{IN} ≤ 22)			(20 ≤ V _{IN} ≤ 26)			V
ΔV_{O}	Load	T _J =	5 mA ≤ I _O ≤ 1.5A		10	25		12	32		12	35	mV
	Regulation	25°C	250 mA ≤ I _O ≤ 750 mA			15			19			21	mV
		Over Tem	perature,			25			60			75	mV
		5 mA ≤ I _O	≤ 1A										
I_{Q}	Quiescent	$T_J = 25^{\circ}C$				6			6			6	mA
	Current	Over Tem	perature	6.5			6.5			6.5			mA
ΔI_Q	Quiescent Current Change	5 mA ≤ I _O	≤ 1A	0.5			0.5			0.5			mA
		$T_J = 25^{\circ}C$, I _O = 1A	0.8			0.8			0.8			mA
		$V_{MIN} \le V_{IN}$	N ≤ V _{MAX}	$(7.5 \le V_{IN} \le 20)$			$(14.8 \le V_{IN} \le 27)$			$(17.9 \le V_{IN} \le 30)$			V
1		$I_{O} = 500 \text{ r}$	nΑ	0.8			0.8			0.8			mA
		$V_{MIN} \le V_{IN}$	√ ≤ V _{MAX}	(8 ≤ V _{IN} ≤ 25)			$(15 \le V_{IN} \le 30)$			$(17.9 \le V_{IN} \le 30)$			V
V_N	Output Noise Voltage	T _A = 25°C kHz	5, 10 Hz ≤ f ≤ 100		40			75			90		μV
ΔV _{IN}	Ripple Rejection	T _J = 25°C 1A	, f = 120 Hz, I _O =	68	80		61	72		60	70		dB
ΔV_{OUT}		or f = 120	Hz, $I_O = 500$ mA,	68		61			60			dB	
		Over Tem	perature,										
		$V_{MIN} \le V_{IN}$		(8 ≤ V _{IN} ≤ 18)			$(15 \le V_{IN} \le 25)$			$(18.5 \le V_{IN} \le 28.5)$			V
R _O	Dropout Voltage	$T_J = 25^{\circ}C$, I _O = 1A		2.0			2.0			2.0		V
	Output Resistance	f = 1 kHz			8			18			19		mΩ
	Short-Circuit Current	$T_J = 25^{\circ}C$			2.1			1.5			1.2		Α
	Peak Output Current	T _J = 25°C			2.4			2.4			2.4		А
	Average TC of V _O	Min, T _J =	0° C, $I_{O} = 5$ mA		-0.6			-1.5			-1.8		mV/°C
V _{IN}	Input Voltage Required to Maintain Line Regulation	T _J = 25°C		7.5			14.5			17.5			V


⁽¹⁾ All characteristics are measured with a 0.22 µF capacitor from input to ground and a 0.1 µF capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

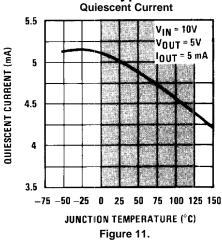

SNVS994 – JULY 2013 www.ti.com

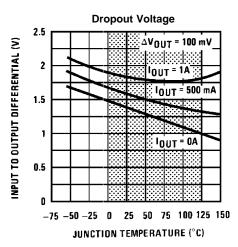
Typical Performance Characteristics

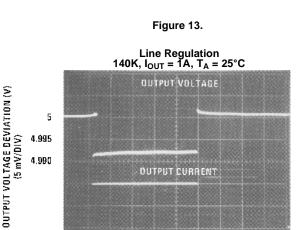


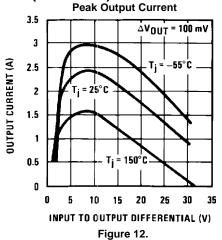


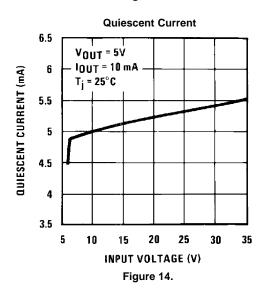
INSTRUMENTS








Typical Performance Characteristics (continued)



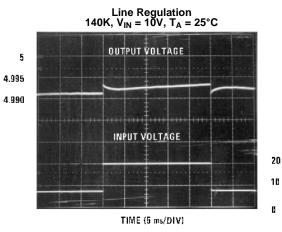
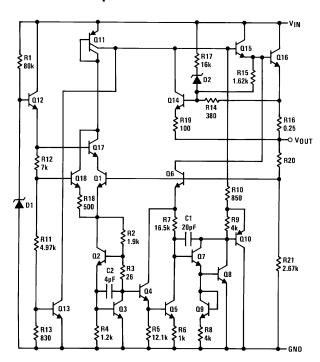


Figure 16.

Copyright © 2013, Texas Instruments Incorporated

INPUT VOLTAGE (V)


OUTPUT VOLTAGE DEVIATION (V) (5 mV/DIV)

OUTPUT CURRENT (A)

1

Equivalent Schematic

APPLICATION HINTS

The LM140K is designed with thermal protection, output short-circuit protection and output transistor safe area protection. However, as with *any* IC regulator, it becomes necessary to take precautions to assure that the regulator is not inadvertently damaged. The following describes possible misapplications and methods to prevent damage to the regulator.

SHORTING THE REGULATOR INPUT

When using large capacitors at the output of these regulators, a protection diode connected input to output (Figure 17) may be required if the input is shorted to ground. Without the protection diode, an input short will cause the input to rapidly approach ground potential, while the output remains near the initial V_{OUT} because of the stored charge in the large output capacitor. The capacitor will then discharge through a large internal input to output diode and parasitic transistors. If the energy released by the capacitor is large enough, this diode, low current metal and the regulator will be destroyed. The fast diode in Figure 17 will shunt most of the capacitors discharge current around the regulator. Generally no protection diode is required for values of output capacitance $\leq 10 \ \mu\text{F}$.

RAISING THE OUTPUT VOLTAGE ABOVE THE INPUT VOLTAGE

Since the output of the device does not sink current, forcing the output high can cause damage to internal low current paths in a manner similar to that just described in the "Shorting the Regulator Input" section.

REGULATOR FLOATING GROUND (Figure 18)

When the ground pin alone becomes disconnected, the output approaches the unregulated input, causing possible damage to other circuits connected to V_{OUT} . If ground is reconnected with power "ON", damage may also occur to the regulator. This fault is most likely to occur when plugging in regulators or modules with on card regulators into powered up sockets. Power should be turned off first, thermal limit ceases operating, or ground should be connected first if power must be left on.

TRANSIENT VOLTAGES

If transients exceed the maximum rated input voltage of the device, or reach more than 0.8V below ground and have sufficient energy, they will damage the regulator. The solution is to use a large input capacitor, a series input breakdown diode, a choke, a transient suppressor or a combination of these.

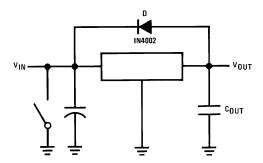


Figure 17. Input Short

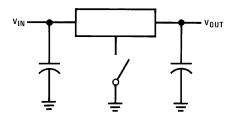


Figure 18. Regulator Floating Ground

Copyright © 2013, Texas Instruments Incorporated

Submit Documentation Feedback

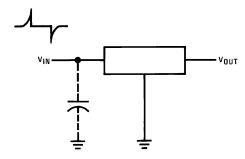
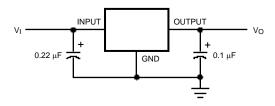
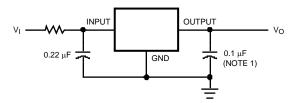



Figure 19. Transients

When a value for $\theta_{(H-A)}$ is found using the equation shown, a heatsink must be selected that has a value that is less than or equal to this number.


 $\theta_{(H-A)}$ is specified numerically by the heatsink manufacturer in this catalog, or shown in a curve that plots temperature rise vs power dissipation for the heatsink.

Typical Applications

Bypass capacitors are recommended for optimum stability and transient response, and should be located as close as possible to the regulator.

Figure 20. Fixed Output Regulator

Submit Documentation Feedback

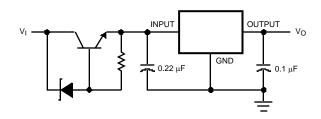
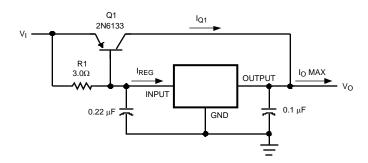
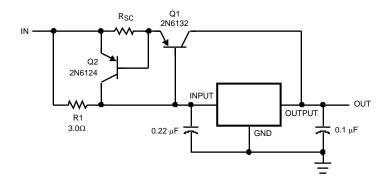




Figure 21. High Input Voltage Circuits

$$\begin{split} \beta(\text{Q1}) &\geq \frac{I_{O\,\text{Max}}}{I_{\text{REG}\,\text{Max}}} \\ \text{R1} &= \frac{0.9}{I_{\text{REG}}} = \frac{\beta(\text{Q1})\;\text{V}_{\text{BE}(\text{Q1})}}{I_{\text{REG}\,\text{Max}}(\beta\,+\,1)\,-\,I_{O\,\text{Max}}} \end{split}$$

Figure 22. High Current Voltage Regulator

$$R_{SC} = \frac{0.8}{I_{SC}}$$

$$R1 = \frac{\beta V_{BE(Q1)}}{I_{REG Max} (\beta + 1) - I_{O Max}}$$

Figure 23. High Output Current, Short Circuit Protected

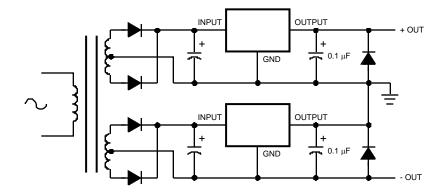


Figure 24. Positive and Negative Regulator

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM140K-12	ACTIVE	TO-3	NDS	2	50	Non-RoHS & Non-Green	Call TI	Call TI	-55 to 125	LM140K 12P+	Samples
LM140K-12/NOPB	ACTIVE	TO-3	NDS	2	50	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	LM140K 12P+	Samples
LM140K-15	ACTIVE	TO-3	NDS	2	50	Non-RoHS & Non-Green	Call TI	Call TI	-55 to 125	LM140K 15P+	Samples
LM140K-15/NOPB	ACTIVE	TO-3	NDS	2	50	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	LM140K 15P+	Samples
LM140K-5.0	ACTIVE	TO-3	NDS	2	50	Non-RoHS & Non-Green	Call TI	Call TI	-55 to 125	LM140K 5.0P+	Samples
LM140K-5.0/NOPB	ACTIVE	TO-3	NDS	2	50	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	LM140K 5.0P+	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

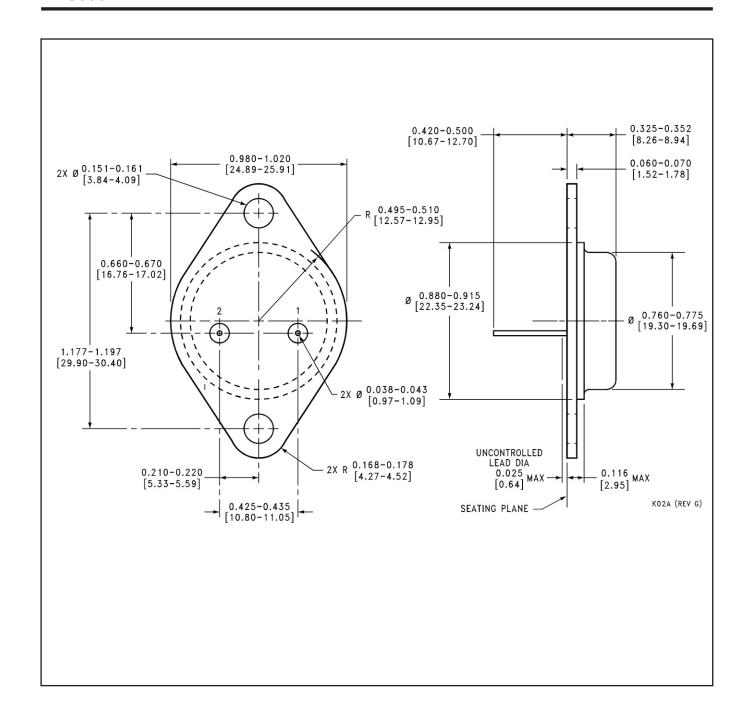
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


PACKAGE OPTION ADDENDUM

10-Dec-2020

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated